Math 125 Section D (Pezzoli)
Fall 2017
Midterm \#2

Section:

- Your exam contains 4 problems. The entire exam is worth 55 points.
- You have 70 minutes to complete this exam.
- This exam is closed book. You may use one $8 \frac{1}{2} " \times 11$ " sheet of notes (both sides). Do not share notes.
- The only calculator allowed is the TI 30x IIS.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct. Show your work in evaluating integrals, even if they are on your note sheet.
- Place a box around your answer to each question.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Raise your hand if you have a question.
- Give your answer in exact form means write $\ln (2)-\pi$ instead of -2.45 . If you are asked to give a decimal approximation, use two decimal digits in your final answer.
- This exam has 5 pages, including this cover sheet. Please make sure that your exam is complete.

Problem \#1(20 pts)

Problem \#2(10 pts)

Problem \#3(13 pts) \qquad

Problem \#4(12 pts)

TOTAL (55 pts) \qquad

1. Calculate the following integrals.
(a) $\int_{4}^{5} \frac{x}{x^{2}-x-2} d x$. Give your final answer as a decimal.

$$
\begin{aligned}
& x^{2}-x-2=(x-2)(x+1) ; \quad \frac{x}{x^{2}-x-2}=\frac{A}{x-2}+\frac{B}{x+1} \text { if } \\
& A(x+1)+B(x-2)=x ; \quad \text { if } x=-1 \text { we get }-3 B=-1 \quad B=1 / 3 \\
& \text { if } x=2 \text { we get } 3 A=2 \quad A=\frac{2}{3} \\
& \int_{4}^{5} \frac{\frac{2}{3}}{x-2}+\frac{\frac{1}{3}}{x+1} d x=\frac{2}{3} \ln |x-2|+\left.\frac{1}{3} \ln |x+1|\right|_{4} ^{5}=\frac{2}{3} \ln \left(\frac{3}{2}\right)+\frac{1}{3} \ln \left(\frac{6}{5}\right) \\
& \frac{1}{3} \ln \left(\frac{54}{20}\right) \approx 0.33
\end{aligned}
$$

$$
\text { (b) } \int \sqrt{3-2 x-x^{2}} d x
$$

$$
\begin{aligned}
& x^{2}+2 x-3=(x+1)^{2}-4 ; \quad \int \sqrt{4-(x+1)^{2}} d x \quad \begin{aligned}
u=x+1 \\
d u
\end{aligned} \\
& \int \sqrt{4-u^{2}} d u \quad d x \\
& \quad u=2 \sin \theta \\
& d u=2 \cos \theta d \theta
\end{aligned}
$$

$$
\int 2.2 \cos ^{2} \theta d \theta=4 \int \frac{1}{2}(1+\cos 2 \theta) d \theta=2 \theta+\sin (2 \theta)+C
$$

$$
=2 \theta+2 \cos \theta \sin \theta+C
$$

going beck to u

$$
\frac{\sqrt{\theta}}{\sqrt{4-v^{2}}} u \cos \theta=\frac{\sqrt{4-v^{2}}}{2} \quad 2 \arcsin \left(\frac{u}{2}\right)+\frac{2 \sqrt{4-u^{2}}}{2} \cdot \frac{u}{2}+C
$$

going back to $x \quad 2 \operatorname{ersin} \frac{(x+1)}{2}+\sqrt{4-(x+1)^{2}} \cdot \frac{(x+1)}{2}+C$
2. Consider the integral $I=\int_{2}^{3} \frac{\sin x}{\ln (x)} d x$. Use $n=4$ subdivisions and Simpson rule to approximate I. Show your work and give your final answer as a decimal.

$$
\begin{aligned}
& \begin{array}{lllll}
1 & 1 & 1 & 1 & 2.25 \\
2 & 2.5 & 2.75 & 3
\end{array} \\
& {[f(2)+4 f(2.25)+2 f(2.5)+4 f(2.75)+f(3)] \cdot \frac{1}{12} \approx 0.67}
\end{aligned}
$$

3. Below is the graph of the region R bounded by the curves $y=\sin x+1, y=1$ between $x=0$ and $x=\pi$.

Find the volume of the solid of revolution obtained by rotating the region R around the line $x=-1$.
$\Delta V=2 \pi r h \Delta x \quad r=x+1, \quad h=y-1=\sin x$
$V=2 \pi \int_{0}^{\pi}(x+1) \sin x d x=-\left.2 \pi(x+1) \cos x\right|_{0} ^{\pi}+2 \pi \int_{0}^{\pi} \cos x d x=$
$-\left.2 \pi(x+1) \cos x\right|_{0} ^{\pi}+\left..2 \pi \sin x\right|_{0} ^{\pi}=2 \pi^{2}+c \pi$

Using washers $\Delta V=\pi\left(r_{2}^{2}-r_{1}^{2}\right) \quad r_{2}=\pi+\arcsin (y-1), r_{1}=\operatorname{arcain}(y-1)$
4. A bag of sand weights 100 lb . The bag of sand is being lifted up from the ground. The bag has a hole and loses sand at a constant rate $r \mathrm{lb} / \mathrm{ft}$, that is after being lifted one foot, the bag has lost $r \mathrm{lb}$ of sands, after two feet the bag has lost $2 r \mathrm{lb}$ of sand and so on. The work done to lift the bag 10 feet is $950 \mathrm{lb}-\mathrm{ft}$. Find r.

Weight x feet above ground $100-r x$
work to lift beg from x_{L} to $x_{L+1}=x_{L}+\Delta x$ feet above the
ground is $\Delta w=100-r x_{v} \Delta x$
$w=\int_{0}^{10} 100-r x d x=$ iSO \quad Solve for r
$100 x-\left.r \frac{x^{2}}{2}\right|_{0} ^{10}=1000-r \cdot 50=950$

$$
\sigma=1 \mathrm{lb} / \partial t
$$

Math 125 Section D (Pezzoli)
Fall 2017
Midterm \#2

Section:

- Your exam contains 4 problems. The entire exam is worth 55 points.
- You have 70 minutes to complete this exam.
- This exam is closed book. You may use one $8 \frac{1}{2} " \times 11$ " sheet of notes (both sides). Do not share notes.
- The only calculator allowed is the TI 30x IIS.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct. Show your work in evaluating integrals, even if they are on your note sheet.
- Place a box around your answer to each question.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Raise your hand if you have a question.
- Give your answer in exact form means write $\ln (2)-\pi$ instead of -2.45 . If you are asked to give a decimal approximation, use two decimal digits in your final answer.
- This exam has 5 pages, including this cover sheet. Please make sure that your exam is complete.

Problem \#1(20 pts)

Problem \#2(10 pts)

Problem \#3(13 pts) \qquad

Problem \#4(12 pts)

TOTAL (55 pts) \qquad

1. Calculate the following integrals.
(a) $\int \sqrt{8-2 x-x^{2}} d x$

$$
\begin{aligned}
& \begin{array}{l}
x^{2}+2 x-8=(x+1)^{2}-9 \quad \int \sqrt{9-(x+1)^{2}} d x \quad \begin{aligned}
u & =x+1 \\
d u & =d x
\end{aligned} \int \sqrt{9-x^{2}} d u \quad \begin{array}{r}
u \\
d u
\end{array} \quad 3 \sin \theta \\
d u=3 \cos \theta d \theta
\end{array} \\
& \int \sqrt{9(1-\sin 2 \theta)} 3 \cos \theta d \theta \quad=\int \cos ^{2} \theta d \theta=\frac{9}{2} \int 1+\cos 2 \theta d \theta=\frac{9}{2} \theta+\frac{9}{c_{1}} \sin 2 \theta+c \\
& \frac{9}{2} \theta+\frac{9}{2} \sin \theta \cos \theta+c \\
& \text { going beck to } u
\end{aligned}
$$

(b) $\int_{3}^{4} \frac{x}{x^{2}+x-2} d x$. Give your answer as a decimal.

$$
\begin{aligned}
& x^{2}+x-2=(x-1)(x+2), \quad \frac{x}{x^{2}+x-2}=\frac{A}{x-1}+\frac{B}{x+2} \quad \text { if } A(x+2)+B(x-1)=x \\
& \text { if } x=-2 \quad-3 B=-2, \quad B=\frac{2}{3}, \quad \text { if } x=1 \quad 3 A=1 \quad A=\frac{1}{3} \\
& \int_{3}^{4} \frac{1}{3} \frac{2}{x-1}+\frac{2}{x+2} d x=\frac{1}{3} \ln |x-1|+\left.\frac{2}{3} \ln |x+2|\right|_{3} ^{4}=\frac{1}{3} \ln \left(\frac{3}{2}\right)+\frac{2}{3} \ln \left(\frac{6}{5}\right) \approx 0.26
\end{aligned}
$$

2. Consider the integral $I=\int_{3}^{4} \frac{\ln x=f(x)}{e^{x}} d x$. Use $n=4$ subdivisions and Simpson rule to approximate I. Show your work and give your final answer as a decimal.

$$
\Delta x=\frac{1}{4}
$$

$S_{4}=\frac{1}{12}(f(3)+4 f(3.25)+2 f(3.5)+h f(3.75)+f(G)) \approx 0.04$
3. Below is the graph of the region R bounded by the curves $y=\cos x+1, y=1$ between $x=\frac{\pi}{2}$ and $x=\frac{3}{2} \pi$.

Find the volume of the solid of revolution obtained by rotating the region R around the line $x=-1$.

$$
\begin{aligned}
& \Delta V=2 \pi r h \Delta x \quad r=x+1, h=1-y=1-(\cos x+1)=-\cos x \\
& V=-2 \pi \int_{\pi / 2}^{\frac{3 \pi}{2} \pi}(x+1) \cos x d x=-2 \pi \int_{\pi / 2}^{\frac{3}{2} \pi} u d v d x-2 \pi \int_{\pi / 2}^{\frac{3}{2} \pi} \cos x d x \\
& -\left.2 \pi x \sin x\right|_{\pi / 2} ^{3 / 4}+2 \pi^{\frac{3 \pi}{2}} \int_{\pi / 2}^{\pi / 2} \sin x-\left.2 \pi \alpha n x\right|_{\pi / 2} ^{\frac{3 \pi}{2}}=2 \pi \frac{3}{2} \pi+2 \pi \frac{\pi}{2}+\left.2 \pi \cos x\right|_{\pi / 2} ^{3 / 2 \pi}+4 \pi \\
& =4 \pi^{2}+4 \pi \\
& U \operatorname{sing} \text { washers } \Delta v=\pi\left(f_{2}^{2}-r_{1}^{2}\right) \Delta y
\end{aligned}
$$

4. A bag of sand weights 100 lb . The bag of sand is being lifted up from the ground. Since it is raining the bag gets heavier and heavier. Its weight increases at a constant rate $r \mathrm{lb} / \mathrm{ft}$, that is after being lifted one foot, the bag has gained one extra rlb of weight, after two feet the bag has gained $2 r$ extra lb of weight and so on. The work done to lift the bag 5 feet is $525 \mathrm{lb}-\mathrm{ft}$. Find r.

$$
\begin{aligned}
& \text { Weight of the bag } x \text { feet above the ground is } 100+r x \\
& \text { work done to lift beg from } x_{L} \text { to } x_{c}+\Delta x \text { feet is } \Delta w=\left(100 \operatorname{tr} x_{L}\right) \Delta x \\
& w=\int_{0}^{5} 100+r x d x=525 \text { dolce for } r \\
& 100 x+\left.\frac{r x^{2}}{2}\right|_{0} ^{5}=500+r 12.5=525 \quad r=21 b / d t
\end{aligned}
$$

